

Université de Lorraine - UR 4366
Pôle Scientifique « Energie Mécanique Procédés Produits »
Groupe de Recherche en Energie Electrique de Nancy

Séminaire Scientifique du GREEN

Caractérisation de défauts structurels dans les rubans supraconducteurs multicouches par thermographie inductive

Doctorant: Walid DIRAHOUI

Encadrants: Melika HINAJE et Hocine MENANA

12 septembre 2022

> Plan

- > Introduction
- Dispositif expérimental
- Modélisation magnétothermique 3D
- Résultats et validation
- Conclusions et perspectives

> Introduction

Contexte

 Dégradation des performances des rubans SHT-2G en présence de défauts structurels.

Objectif

Contrôle non destructif en utilisant la thermographie infrarouge par induction à température ambiante.

Verrous scientifiques et techniques

- Structure multicouche fine.
- Dimensions multi-échelles.
- Matériaux avec des propriétés physiques différentes.

Image microscopique d'un délaminage dans un ruban SHT-2G

Schéma de principe du contrôle par thermographie infrarouge par induction

Structure type d'un ruban SHT-2G à base de REBCO

> Introduction

- > Etat de l'art sur les techniques de contrôle
- Cartographie de la carte de champ « field mapping »:

Dispositif expérimental

Description du dispositif expérimental

• Inducteur tournant.

 Permet d'éviter les perturbations thermiques générées par les inducteurs électromagnétiques.

Structures réelle et conceptuelle du dispositif expérimental pour le contrôle des rubans SHT-2G par thermographie infrarouge

Modélisation magnétothermique en 3D

Modèle électromagnétique

Courants induits

$$\vec{\nabla} \times \vec{\bar{\sigma}}^{-1} \vec{\nabla} \times \vec{T}_z = -\partial_t \left(\vec{B}_z^s + \frac{\mu_0}{4\pi} \int_{\nu} \frac{\vec{\nabla} \times \vec{T}_z \times \vec{r}}{r^3} d\nu \right) \longrightarrow \begin{cases} J_x = \frac{\partial T_z}{\partial y} \\ J_y = -\frac{\partial T_z}{\partial x} \end{cases}$$

Champ magnétique source

$$\begin{cases} S = x - (-1)^{i} a \\ K = (y + R_{m} \sin \theta) - (-1)^{j} a \\ U = (z - R_{m} \cos \theta) - (-1)^{k} a \\ R = \sqrt{S^{2} + K^{2} + U^{2}} \end{cases}$$

$$\theta = \Omega t$$

Le système modélisé

Paramètre	Valeur	Description		
L	50 mm	Longueur du ruban SHT		
W	4 mm	Largeur du ruban SHT		
D	0,1 mm	Epaisseur du ruban SHT		
а	2,5 mm	Demi-longueur du coté des aimants permanents		
R_m	22.5 mm	Distance entre le centre de la roue polaire et ceux des aimants permanents		
B^r	1.4 T	Champ magnétique rémanent des aimants permanents		
Ω	826,73 rad/s	Vitesse angulaire de la roue polaire		

Modélisation magnétothermique en 3D

Modèle thermique

Equation de diffusion thermique

$$\begin{cases} \gamma C_p \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) + \mathcal{P} \\ -\lambda \vec{\nabla} T. \vec{n} = h(T - T_e), \quad on \ \Gamma \end{cases}$$

Conditions aux limites

$$\begin{cases} \lambda_{W} \frac{\partial T}{\partial x} \Big|_{W} = h_{x} (T_{p} - T_{e}) \\ -\lambda_{E} \frac{\partial T}{\partial x} \Big|_{E} = h_{x} (T_{p} - T_{e}) \\ \lambda_{F} \frac{\partial T}{\partial y} \Big|_{F} = h_{y} (T_{p} - T_{e}) \\ -\lambda_{B} \frac{\partial T}{\partial y} \Big|_{E} = h_{y} (T_{p} - T_{e}) \\ \lambda_{S} \frac{\partial T}{\partial z} \Big|_{S} = h_{z}^{S} (T_{p} - T_{e}) \\ -\lambda_{N} \frac{\partial T}{\partial z} \Big|_{N} = h_{z}^{N} (T_{p} - T_{e}) \end{cases}$$

Schéma de discrétisation basé sur la MDF

Indice global:

$$p = i + (j - 1)N + (k - 1)NM$$

avec $(1 \le i \le N, 1 \le j \le M, 1 \le k \le L)$

Résultats de simulation électromagnétique

YBCO

Résultats de simulation électromagnétique

Ruban SHT

0.4

0.2

-0.2

-0.4

0 $\theta_{\text{N-S}}$ $2\theta_{\text{N-S}}$ $3\theta_{\text{N-S}}$ $4\theta_{\text{N-S}}$ Position angulaire de la roue (rad)

Evolution du champ magnétique Bz en trois points de la surface du ruban SHT

YBCO

Résultats de mesure et de simulation thermiques

Influence de la position du défaut par rapport à la roue polaire

Profils de température ΔT suivant la longueur du ruban SHT

Influence de la variation de a fréquence du champ magnétique sur la détection des défauts

• $\Omega = 698,13 \ rad/s$

• $\Omega = 455,3 \, rad/s$

Influence de la taille des défauts par rapport à la taille des aimants

Défaut de matière : 3 mm × 2 mm × 40 μm

Fissure : 4 mm × 2 mm × 20 μm

Contrôle de l'intégrité des filaments dans les rubans striés

Contrôle de l'intégrité des filaments dans les rubans striés

Evaluation des effets mécaniques

$$\begin{split} d\vec{F} &= \vec{J} \times \vec{B} = \left(J_y B_z\right) \vec{e}_x - \left(J_x B_z\right) \vec{e}_y + \left(J_x B_y - J_y B_x\right) \vec{e}_z \\ \left\{ \begin{aligned} d\vec{F}_x &= \left(J_y B_z\right) \vec{e}_x \\ d\vec{F}_y &= -\left(J_x B_z\right) \vec{e}_y \\ d\vec{F}_z &= \left(J_x B_y - J_y B_x\right) \vec{e}_z \end{aligned} \right. \end{aligned} \qquad \text{Courants if }$$

$$\vec{F}_u = \sum_{i=0}^{Ne} d\vec{F}_u^{(i)} v c_i \qquad (u \equiv x, y, z)$$

Evolution des forces suivant les trois axes x,y et z dans la couche Hast-YBCO

> Conclusions et perspectives

- Investigations numériques et expérimentales pour le contrôle des rubans SHT-2G par thermographie infrarouge inductive à température ambiante.
- > Possibilité de détection de plusieurs type de défauts.
- Modélisation numérique efficace et qui permet de simuler des défauts sans les reproduire expérimentalement.
- > Evaluation des effets mécaniques.
- Perspectives : amélioration de la structure de l'inducteur et réalisation de défauts structurels de formes maitrisées dans les rubans SHT-2G et les caractériser par thermographie infrarouge.

Université de Lorraine - UR 4366
Pôle Scientifique « Energie Mécanique Procédés Produits »
Groupe de Recherche en Energie et Electrique de Nancy

Merci pour votre attention

Annexe

Formulation du modèle électromagnétique :

$$\nabla^2(A - xB_a) = -\mu_0 J \tag{1}$$

$$A(\vec{\mathbf{r}}) - x B_a = -\mu_0 \iint_S G(\vec{\mathbf{r}}, \vec{\mathbf{r}}') J(\vec{\mathbf{r}}') ds$$
 (2)

$$\partial_t A = -\rho J \tag{3}$$

$$\rho J(\vec{\mathbf{r}}) - j\omega\mu_0 \iint_{S} \mathbf{G}(\vec{\mathbf{r}}, \vec{\mathbf{r}}') J(\vec{\mathbf{r}}') dS = -j\omega x B_a$$
(4)

• Formulation du modèle thermique :

$$\begin{cases} \gamma C_p \partial_t T = \partial_x (\lambda \partial_x T) + \partial_y (\lambda \partial_y T) + P \\ -\lambda \nabla T \cdot \mathbf{n} = h(T - T_e) \end{cases}$$
 (5)

Paramètre	а	b	B_a	f
Valeur	5 mm	0,1 mm	0,1 T	7 kHz

• Résultats de simulation thermiques :

Délaminage supérieur T(K)

