

Université de Lorraine - UR 4366 Pôle Scientifique « Energie Mécanique Procédés Produits » **Groupe de Recherche en Energie Electrique de Nancy**

Séminaire Scientifique du GREEN

Caractérisation de défauts structurels dans les rubans supraconducteurs multicouches par thermographie inductive

Doctorant : Walid DIRAHOUI Encadrants : Melika HINAJE et Hocine MENANA

12 septembre 2022

Introduction

- Dispositif expérimental
- Modélisation magnétothermique 3D
- Résultats et validation
- Conclusions et perspectives

Introduction

<u>Contexte</u>

 Dégradation des performances des rubans SHT-2G en présence de défauts structurels.

<u>Objectif</u>

• Contrôle non destructif en utilisant la thermographie infrarouge par induction à **température ambiante**.

Verrous scientifiques et techniques

- Structure multicouche fine.
- Dimensions multi-échelles.
- Matériaux avec des propriétés physiques différentes.

Introduction

- > Etat de l'art sur les techniques de contrôle
- Cartographie de la carte de champ « field mapping »:

Dispositif expérimental

Description du dispositif expérimental

- Inducteur tournant.
- Permet d'éviter les perturbations thermiques générées par les inducteurs électromagnétiques.

Structures réelle et conceptuelle du dispositif expérimental pour le contrôle des rubans SHT-2G par thermographie infrarouge

Modélisation magnétothermique en 3D

Modèle électromagnétique

Courants induits

$$\vec{\nabla} \times \bar{\sigma}^{-1} \vec{\nabla} \times \vec{T}_z = -\partial_t \left(\vec{B}_z^s + \frac{\mu_0}{4\pi} \int_{\nu} \frac{\vec{\nabla} \times \vec{T}_z \times \vec{r}}{r^3} d\nu \right) \longrightarrow \begin{cases} J_x = \frac{\partial T_z}{\partial y} \\ J_y = -\frac{\partial T_z}{\partial x} \end{cases}$$

Champ magnétique source

Le système modélisé

Modélisation magnétothermique en 3D

Modèle thermique

• Equation de diffusion thermique

$$\begin{pmatrix} \gamma C_p \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda \frac{\partial T}{\partial z} \right) + \mathcal{F} \\ -\lambda \vec{\nabla} \mathbf{T} \cdot \vec{\mathbf{n}} = h(T - T_e), \quad on \ \Gamma \end{cases}$$

• Conditions aux limites

$$\begin{cases} \lambda_{W} \frac{\partial T}{\partial x} \Big|_{W} = h_{x} (T_{p} - T_{e}) \\ -\lambda_{E} \frac{\partial T}{\partial x} \Big|_{E} = h_{x} (T_{p} - T_{e}) \\ \lambda_{F} \frac{\partial T}{\partial y} \Big|_{F} = h_{y} (T_{p} - T_{e}) \\ -\lambda_{B} \frac{\partial T}{\partial y} \Big|_{B} = h_{y} (T_{p} - T_{e}) \\ \lambda_{S} \frac{\partial T}{\partial z} \Big|_{S} = h_{z}^{S} (T_{p} - T_{e}) \\ -\lambda_{N} \frac{\partial T}{\partial z} \Big|_{N} = h_{z}^{N} (T_{p} - T_{e}) \end{cases}$$

Résultats de simulation électromagnétique

Résultats de simulation électromagnétique

Evolution du champ magnétique Bz en trois points de la surface du ruban SHT

Résultats de mesure et de simulation thermiques

Photographie du ruban SHT-2G fourni par Shanghai Superconductor

de la roue polaire

Défaut

centré

Influence de la position du défaut par rapport à la roue polaire

11

T(°C)

38

36

25

 $\Delta T(^{\circ}C)$

25

Influence de la variation de a fréquence du champ magnétique sur la détection des défauts

• $\Omega = 698,13 \ rad/s$

• $\Omega = 455,3 \, rad/s$

Influence de la taille des défauts par rapport à la \succ taille des aimants

Fissure : 4 mm × 2 mm × 20 µm

13

Contrôle de l'intégrité des filaments dans les rubans striés

Contrôle de l'intégrité des filaments dans les rubans striés

Evaluation des effets mécaniques

 $d\vec{F} = \vec{J} \times \vec{B} = (J_y B_z) \vec{e}_x - (J_x B_z) \vec{e}_y + (J_x B_y - J_y B_x) \vec{e}_z$ $\begin{cases} d\vec{F}_x = (J_y B_z) \vec{e}_x \\ d\vec{F}_y = -(J_x B_z) \vec{e}_y \\ d\vec{F}_z = (J_x B_y - J_y B_x) \vec{e}_z \end{cases}$ Courants in

$$\vec{F}_u = \sum_{i=0}^{Ne} d\vec{F}_u^{(i)} v c_i \qquad (u \equiv x, y, z)$$

NT -

Evolution des forces suivant les trois axes x,y et z dans la couche Hast-YBCO

- Investigations numériques et expérimentales pour le contrôle des rubans SHT-2G par thermographie infrarouge inductive à température ambiante.
- Possibilité de détection de plusieurs type de défauts.
- Modélisation numérique efficace et qui permet de simuler des défauts sans les reproduire expérimentalement.
- Evaluation des effets mécaniques.
- Perspectives : amélioration de la structure de l'inducteur et réalisation de défauts structurels de formes maitrisées dans les rubans SHT-2G et les caractériser par thermographie infrarouge.

Université de Lorraine - UR 4366 Pôle Scientifique « Energie Mécanique Procédés Produits » **Groupe de Recherche en Energie et Electrique de Nancy**

Merci pour votre attention

> Annexe

